Nature Communications | 2019

Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops

 
 
 
 
 

Abstract


Perennial grasses are promising feedstocks for biofuel production, with potential for leveraging their native microbiomes to increase their productivity and resilience to environmental stress. Here, we characterize the 16S rRNA gene diversity and seasonal assembly of bacterial and archaeal microbiomes of two perennial cellulosic feedstocks, switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus x giganteus). We sample leaves and soil every three weeks from pre-emergence through senescence for two consecutive switchgrass growing seasons and one miscanthus season, and identify core leaf taxa based on occupancy. Virtually all leaf taxa are also detected in soil; source-sink modeling shows non-random, ecological filtering by the leaf, suggesting that soil is an important reservoir of phyllosphere diversity. Core leaf taxa include early, mid, and late season groups that were consistent across years and crops. This consistency in leaf microbiome dynamics and core members is promising for microbiome manipulation or management to support crop production. Microbial communities of plant leaf surfaces are ecologically important, but how they assemble and vary in time is unclear. Here, the authors identify core leaf microbiomes and seasonal patterns for two biofuel crops and show with source-sink models that soil is a reservoir of phyllosphere diversity.

Volume 10
Pages None
DOI 10.1038/s41467-019-11974-4
Language English
Journal Nature Communications

Full Text