Nature Communications | 2019

Improved polygenic prediction by Bayesian multiple regression on summary statistics

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Accurate prediction of an individual’s phenotype from their DNA sequence is one of the great promises of genomics and precision medicine. We extend a powerful individual-level data Bayesian multiple regression model (BayesR) to one that utilises summary statistics from genome-wide association studies (GWAS), SBayesR. In simulation and cross-validation using 12 real traits and 1.1 million variants on 350,000 individuals from the UK Biobank, SBayesR improves prediction accuracy relative to commonly used state-of-the-art summary statistics methods at a fraction of the computational resources. Furthermore, using summary statistics for variants from the largest GWAS meta-analysis (n ≈ 700, 000) on height and BMI, we show that on average across traits and two independent data sets that SBayesR improves prediction R 2 by 5.2% relative to LDpred and by 26.5% relative to clumping and p value thresholding. Various approaches are being used for polygenic prediction including Bayesian multiple regression methods that require access to individual-level genotype data. Here, the authors extend BayesR to utilise GWAS summary statistics (SBayesR) and show that it outperforms other summary statistic-based methods.

Volume 10
Pages None
DOI 10.1038/s41467-019-12653-0
Language English
Journal Nature Communications

Full Text