Nature Communications | 2019

Anomalous magnetoresistance due to longitudinal spin fluctuations in a Jeff\u2009=\u20091/2 Mott semiconductor

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


As a hallmark of electronic correlation, spin-charge interplay underlies many emergent phenomena in doped Mott insulators, such as high-temperature superconductivity, whereas the half-filled parent state is usually electronically frozen with an antiferromagnetic order that resists external control. We report on the observation of a positive magnetoresistance that probes the staggered susceptibility of a pseudospin-half square-lattice Mott insulator built as an artificial SrIrO3/SrTiO3 superlattice. Its size is particularly large in the high-temperature insulating paramagnetic phase near the NĂ©el transition. This magnetoresistance originates from a collective charge response to the large longitudinal spin fluctuations under a linear coupling between the external magnetic field and the staggered magnetization enabled by strong spin-orbit interaction. Our results demonstrate a magnetic control of the binding energy of the fluctuating particle-hole pairs in the Slater-Mott crossover regime analogous to the Bardeen-Cooper-Schrieffer-to-Bose-Einstein condensation crossover of ultracold-superfluids. Spin-charge interactions are at the core of electronic correlation phenomena in Mott insulators. Here, the authors observe a positive anomalous magnetoresistance in a SrIrO3/SrTiO3 superlattice, indicative of strong spin-charge fluctuations in this pseudospin-half square-lattice Mott insulator.

Volume 10
Pages None
DOI 10.1038/s41467-019-13271-6
Language English
Journal Nature Communications

Full Text