Nature Communications | 2019
Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects
Abstract
Transcranial electrical stimulation (tES) of the brain can have variable effects, plausibly driven by individual differences in neuroanatomy and resulting differences of the electric fields inside the brain. Here, we integrated individual simulations of electric fields during tES with source localization to predict variability of transcranial alternating current stimulation (tACS) aftereffects on α-oscillations. In two experiments, participants received 20-min of either α-tACS (1\u2009mA) or sham stimulation. Magnetoencephalogram (MEG) was recorded for 10-min before and after stimulation. tACS caused a larger power increase in the α-band compared to sham. The variability of this effect was significantly predicted by measures derived from individual electric field modeling. Our results directly link electric field variability to variability of tACS outcomes, underline the importance of individualizing stimulation protocols, and provide a novel approach to analyze tACS effects in terms of dose-response relationships. Electrical stimulation of the brain can have variable effects, perhaps because of individual differences in brain structure which produce differences in the electric fields. Here, the authors show that using functional and structural brain imaging along with electric field modeling can predict the effectiveness of stimulation.