Nature Communications | 2019

A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids

 
 
 
 
 

Abstract


An extremely broad and important class of phenomena in nature involves the settling and aggregation of matter under gravitation in fluid systems. Here, we observe and model mathematically an unexpected fundamental mechanism by which particles suspended within stratification may self-assemble and form large aggregates without adhesion. This phenomenon arises through a complex interplay involving solute diffusion, impermeable boundaries, and aggregate geometry, which produces toroidal flows. We show that these flows yield attractive horizontal forces between particles at the same heights. We observe that many particles demonstrate a collective motion revealing a system which appears to solve jigsaw-like puzzles on its way to organizing into a large-scale disc-like shape, with the effective force increasing as the collective disc radius grows. Control experiments isolate the individual dynamics, which are quantitatively predicted by simulations. Numerical force calculations with two spheres are used to build many-body simulations which capture observed features of self-assembly. Aggregation of matter, common in stratified fluid systems, is essential to the carbon cycle and ocean ecology. Although the current understanding of aggregation involves only collision and adhesion, here Camassa et al. reveal a self-assembly phenomenon arising solely from diffusion-induced flows.

Volume 10
Pages None
DOI 10.1038/s41467-019-13643-y
Language English
Journal Nature Communications

Full Text