Nature Communications | 2021

Programmable site-selective labeling of oligonucleotides based on carbene catalysis

 
 
 

Abstract


Site-selective modification of oligonucleotides serves as an indispensable tool in many fields of research including research of fundamental biological processes, biotechnology, and nanotechnology. Here we report chemo- and regioselective modification of oligonucleotides based on rhodium(I)-carbene catalysis in a programmable fashion. Extensive screening identifies a rhodium(I)-catalyst that displays robust chemoselectivity toward base-unpaired guanosines in single and double-strand oligonucleotides with structurally complex secondary structures. Moreover, high regioselectivity among multiple guanosines in a substrate is achieved by introducing guanosine-bulge loops in a duplex. This approach allows the introduction of multiple unique functional handles in an iterative fashion, the utility of which is exemplified in DNA-protein cross-linking in cell lysates.

Volume 12
Pages None
DOI 10.1038/s41467-021-21839-4
Language English
Journal Nature Communications

Full Text