Nature Communications | 2021

Polariton-assisted excitation energy channeling in organic heterojunctions

 
 
 

Abstract


Exciton-polaritons are hybrid light-matter states resulting from strong exciton-photon coupling. The wave function of the polariton is a mixture of light and matter, enabling long-range energy transfer between spatially separated chromophores. Moreover, their delocalized nature, inherited from the photon component, has been predicted to enhance exciton transport. Here, we strongly couple an organic heterojunction consisting of energy/electron donor and acceptor materials to the same cavity mode. Using time-resolved spectroscopy and optoelectrical characterization, we show that the rate of exciton harvesting is enhanced with one order of magnitude and the rate of energy transfer in the system is increased two- to threefold in the strong coupling regime. Our results exemplify two means of efficiently channeling excitation energy to a heterojunction interface, where charge separation can occur. This study opens a new door to increase the overall efficiency of light harvesting systems using the tool of strong light-matter interactions. Exploiting delocalized organic polaritons for enhanced exciton harvesting has been advantageous for organic optoelectronic with planar heterojunctions. Here, the authors report polariton-assisted excitation energy channeling in organic heterojunctions coupled to the same cavity mode.

Volume 12
Pages None
DOI 10.1038/s41467-021-22183-3
Language English
Journal Nature Communications

Full Text