Nature Communications | 2021

Terahertz response of monolayer and few-layer WTe2 at the nanoscale

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Tungsten ditelluride (WTe2) is an atomically layered transition metal dichalcogenide whose physical properties change systematically from monolayer to bilayer and few-layer versions. In this report, we use apertureless scattering-type near-field optical microscopy operating at Terahertz (THz) frequencies and cryogenic temperatures to study the distinct THz range electromagnetic responses of mono-, bi- and trilayer WTe2 in the same multi-terraced micro-crystal. THz nano-images of monolayer terraces uncovered weakly insulating behavior that is consistent with transport measurements. The near-field signal on bilayer regions shows moderate metallicity with negligible temperature dependence. Subdiffractional THz imaging data together with theoretical calculations involving thermally activated carriers favor the semimetal scenario with \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Delta \\approx -10\\,{{{\\rm{meV}}}}$$\\end{document}Δ≈−10meV over the semiconductor scenario for bilayer WTe2. Also, we observed clear metallic behavior of the near-field signal on trilayer regions. Our data are consistent with the existence of surface plasmon polaritons in the THz range confined to trilayer terraces in our specimens. Finally, data for microcrystals up to 12 layers thick reveal how the response of a few-layer WTe2 asymptotically approaches the bulk limit.

Volume 12
Pages None
DOI 10.1038/s41467-021-23933-z
Language English
Journal Nature Communications

Full Text