Nature Chemistry | 2019

The formation of all-cis-(multi)fluorinated piperidines by a dearomatization–hydrogenation process

 
 
 
 
 

Abstract


AbstractPiperidines and fluorine substituents are both independently indispensable components in pharmaceuticals, agrochemicals and materials. Logically, the incorporation of fluorine atoms into piperidine scaffolds is therefore an area of tremendous potential. However, synthetic approaches towards the formation of these architectures are often impractical. The diastereoselective synthesis of substituted monofluorinated piperidines often requires substrates with pre-defined stereochemistry. That of multifluorinated piperidines is even more challenging, and often needs to be carried out in multistep syntheses. In this report, we describe a straightforward process for the one-pot rhodium-catalysed dearomatization–hydrogenation of fluoropyridine precursors. This strategy enables the formation of a plethora of substituted all-cis-(multi)fluorinated piperidines in a highly diastereoselective fashion through pyridine dearomatization followed by complete saturation of the resulting intermediates by hydrogenation. Fluorinated piperidines with defined axial/equatorial orientation of fluorine substituents were successfully applied in the preparation of commercial drugs analogues. Additionally, fluorinated PipPhos as well as fluorinated ionic liquids were obtained by this dearomatization–hydrogenation process.Despite their huge potential in medicinal chemistry, current approaches for the synthesis of fluorinated piperidines are often impractical. A straightforward process for the rhodium-catalysed dearomatization–hydrogenation of fluoropyridines has now been described. This strategy enables the highly diastereoselective formation of a variety of all-cis-(multi)fluorinated piperidines and the study of their conformational behaviour.\n

Volume 11
Pages 264-270
DOI 10.1038/s41557-018-0197-2
Language English
Journal Nature Chemistry

Full Text