Nature Chemistry | 2021

Cellular uptake of large biomolecules enabled by cell-surface-reactive cell-penetrating peptide additives

 
 
 
 
 

Abstract


Enabling the cellular delivery and cytosolic bioavailability of functional proteins constitutes a major challenge for the life sciences. Here we demonstrate that thiol-reactive arginine-rich peptide additives can enhance the cellular uptake of protein–CPP conjugates in a non-endocytic mode, even at low micromolar concentration. We show that such thiol- or HaloTag-reactive additives can result in covalently anchored CPPs on the cell surface, which are highly effective at co-delivering protein cargoes. Taking advantage of the thiol reactivity of our most effective CPP additive, we show that Cys-containing proteins can be readily delivered into the cytosol by simple co-addition of a slight excess of this CPP. Furthermore, we demonstrate the application of our ‘CPP-additive technique’ in the delivery of functional enzymes, nanobodies and full-length immunoglobulin-G antibodies. This new cellular uptake protocol greatly simplifies both the accessibility and efficiency of protein and antibody delivery, with minimal chemical or genetic engineering. Robust delivery of proteins into cells is challenging, but it has now been shown that by conjugating arginine-rich cell-penetrating peptides to the surface of cells, proteins containing a cell-penetrating peptide can be delivered efficiently into them. Using a thiol-reactive cell-penetrating peptide enables thiol-containing proteins to be delivered by simple co-incubation.

Volume 13
Pages 530 - 539
DOI 10.1038/s41557-021-00661-x
Language English
Journal Nature Chemistry

Full Text