Nature Materials | 2021

Hydrogen-doped viscoplastic liquid metal microparticles for stretchable printed metal lines

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Conductive and stretchable electrodes that can be printed directly on a stretchable substrate have drawn extensive attention for wearable electronics and electronic skins. Printable inks that contain liquid metal are strong candidates for these applications, but the insulating oxide skin that forms around the liquid metal particles limits their conductivity. This study reveals that hydrogen doping introduced by ultrasonication in the presence of aliphatic polymers makes the oxide skin highly conductive and deformable. X-ray photoelectron spectroscopy and atom probe tomography confirmed the hydrogen doping, and first-principles calculations were used to rationalize the obtained conductivity. The printed circuit lines show a metallic conductivity (25,000\u2009S\u2009cm–1), excellent electromechanical decoupling at a 500% uniaxial stretching, mechanical resistance to scratches and long-term stability in wide ranges of temperature and humidity. The self-passivation of the printed lines allows the direct printing of three-dimensional circuit lines and double-layer planar coils that are used as stretchable inductive strain sensors. Hydrogen doping and polymer adsorption at the oxide surface of liquid metal microparticles increase the conductivity and viscoplastic behaviour of the oxide, leading to liquid-metal-based printed circuits with stable resistance up to 500% strain.

Volume 20
Pages 533 - 540
DOI 10.1038/s41563-020-00863-7
Language English
Journal Nature Materials

Full Text