Nature microbiology | 2019

Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion

 
 
 
 
 
 
 
 
 
 

Abstract


To maintain prolonged infection of mammals, African trypanosomes have evolved remarkable surface coats and a system of antigenic variation1. Within these coats are receptors for macromolecular nutrients such as transferrin2,3. These must be accessible to their ligands but must not confer susceptibility to immunoglobulin-mediated attack. Trypanosomes have a wide host range and their receptors must also bind ligands from diverse species. To understand how these requirements are achieved, in the context of transferrin uptake, we determined the structure of a Trypanosoma brucei transferrin receptor in complex with human transferrin, showing how this heterodimeric receptor presents a large asymmetric ligand-binding platform. The trypanosome genome contains a family of around 14 transferrin receptors4, which has been proposed to allow binding to transferrin from different mammalian hosts5,6. However, we find that a single receptor can bind transferrin from a broad range of mammals, indicating that receptor variation is unlikely to be necessary for promiscuity of host infection. In contrast, polymorphic sites and N-linked glycans are preferentially found in exposed positions on the receptor surface, not contacting transferrin, suggesting that transferrin receptor diversification is driven by a need for antigenic variation in the receptor to prolong survival in a host. The structure of a transferrin receptor from the parasite Trypanosoma brucei in complex with human transferrin helps to understand how the parasite can use surface exposed receptors to acquire nutrients during infection while avoiding host immune detection.

Volume 4
Pages 2074 - 2081
DOI 10.1038/s41564-019-0589-0
Language English
Journal Nature microbiology

Full Text