Nature Nanotechnology | 2019

Reversible coordination-induced spin-state switching in complexes on metal surfaces



Molecular spin switches are attractive candidates for controlling the spin polarization developing at the interface between molecules and magnetic metal surfaces1,2, which is relevant for molecular spintronics devices3–5. However, so far, intrinsic spin switches such as spin-crossover complexes have suffered from fragmentation or loss of functionality following adsorption on metal surfaces, with rare exceptions6–9. Robust metal–organic platforms, on the other hand, rely on external axial ligands to induce spin switching10–14. Here we integrate a spin switching functionality into robust complexes, relying on the mechanical movement of an axial ligand strapped to the porphyrin ring. Reversible interlocked switching of spin and coordination, induced by electron injection, is demonstrated on Ag(111) for this class of compounds. The stability of the two spin and coordination states of the molecules exceeds days at 4\u2009K. The potential applications of this switching concept go beyond the spin functionality, and may turn out to be useful for controlling the catalytic activity of surfaces15. Spin-crossover complexes often lose their functionality upon adsorption on metal surfaces. Here, a metal–organic complex adsorbed on a silver surface undergoes reversible interlocked spin and coordination switching, which is enabled by an intramolecular feedback mechanism controlling the position of an axial ligand strapped to the complex.

Volume 15
Pages 18 - 21
DOI 10.1038/s41565-019-0594-8
Language English
Journal Nature Nanotechnology

Full Text