Nature Nanotechnology | 2021

Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has grown into a global pandemic, and only a few antiviral treatments have been approved to date. Angiotensin-converting enzyme 2 (ACE2) plays a fundamental role in SARS-CoV-2 pathogenesis because it allows viral entry into host cells. Here we show that ACE2 nanodecoys derived from human lung spheroid cells (LSCs) can bind and neutralize SARS-CoV-2 and protect the host lung cells from infection. In mice, these LSC-nanodecoys were delivered via inhalation therapy and resided in the lungs for over 72\u2009h post-delivery. Furthermore, inhalation of the LSC-nanodecoys accelerated clearance of SARS-CoV-2 mimics from the lungs, with no observed toxicity. In cynomolgus macaques challenged with live SARS-CoV-2, four doses of these nanodecoys delivered by inhalation promoted viral clearance and reduced lung injury. Our results suggest that LSC-nanodecoys can serve as a potential therapeutic agent for treating COVID-19. In this paper the authors show that nanovesicles coated with lung spheroid cell membranes expressing angiotensin-converting enzyme 2 can bind the spike protein of SARS-CoV-2, neutralizing the virus and preventing lung cell infections in murine and non-human primate models. The nanodecoys could represent a potential therapeutic agent to treat COVID-19.

Volume 16
Pages 942 - 951
DOI 10.1038/s41565-021-00923-2
Language English
Journal Nature Nanotechnology

Full Text