Nature | 2019

Structural insights into the activation of metabotropic glutamate receptors

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Metabotropic glutamate receptors are family C G-protein-coupled receptors. They form obligate dimers and possess extracellular ligand-binding Venus flytrap domains, which are linked by cysteine-rich domains to their 7-transmembrane domains. Spectroscopic studies show that signalling is a dynamic process, in which large-scale conformational changes underlie the transmission of signals from the extracellular Venus flytraps to the G protein-coupling domains—the 7-transmembrane domains—in the membrane. Here, using a combination of X-ray crystallography, cryo-electron microscopy and signalling studies, we present a structural framework for the activation mechanism of metabotropic glutamate receptor subtype 5. Our results show that agonist binding at the Venus flytraps leads to a compaction of the intersubunit dimer interface, thereby bringing the cysteine-rich domains into close proximity. Interactions between the cysteine-rich domains and the second extracellular loops of the receptor enable the rigid-body repositioning of the 7-transmembrane domains, which come into contact with each other to initiate signalling.The activation mechanism of metabotropic glutamate receptor subtype 5, a member of the family C G-protein-coupled receptors, is characterized by a combination of cryo-electron microscopy, crystallography and signalling studies.

Volume 566
Pages 79-84
DOI 10.1038/s41586-019-0881-4
Language English
Journal Nature

Full Text