Scientific Data | 2021

Global soil moisture data derived through machine learning trained with in-situ measurements

 
 

Abstract


While soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml . We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10\u2009cm, 10–30\u2009cm, and 30–50\u2009cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses. Measurement(s) wetness of soil Technology Type(s) machine learning Factor Type(s) soil layer • temporal interval • geographic location Sample Characteristic - Environment soil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14790510

Volume 8
Pages None
DOI 10.1038/s41597-021-00964-1
Language English
Journal Scientific Data

Full Text