Scientific Reports | 2019

Toxic aldehyde generation in and food uptake from culinary oils during frying practices: peroxidative resistance of a monounsaturate-rich algae oil

 
 
 
 
 
 

Abstract


Human ingestion of cytotoxic and genotoxic aldehydes potentially induces deleterious health effects, and high concentrations of these secondary lipid oxidation products (LOPs) are generated in polyunsaturated fatty acid (PUFA)-rich culinary oils during high temperature frying practices. Here, we explored the peroxidative resistance of a novel monounsaturate-rich algae frying oil (MRAFO) during laboratory-simulated shallow- and domestically-based repetitive deep-frying episodes (LSSFEs and DBRDFEs respectively), the latter featuring potato chip fryings. Culinary frying oils underwent LSSFEs at 180\u2009°C, and DBRDFEs at 170\u2009°C: aldehydes were determined by 1H NMR analysis in samples collected at increasing heating/frying time-points. Fast food restaurant-fried potato chip serving (FFRPCS) aldehyde contents were also monitored. Substantially lower levels of aldehydes were generated in the MRAFO product than those observed in PUFA-richer oils during LSSFEs. Toxicologically-significant concentrations of aldehydes were detected in FFRPCSs, and potato chips exposed to DBRDFEs when using a PUFA-laden sunflower oil frying medium: these contents increased with augmented deep-frying episode repetition. FFRPCS aldehyde contents were 10–25 ppm for each class monitored. In conclusion, the MRAFO product generated markedly lower levels of food-penetrative, toxic aldehydes than PUFA-rich ones during LSSFEs. Since FFRPCS and DBRDFE potato chip aldehydes are predominantly frying oil-derived, PUFA-deplete MRAFOs potentially offer health-friendly advantages.

Volume 9
Pages None
DOI 10.1038/s41598-019-39767-1
Language English
Journal Scientific Reports

Full Text