Scientific Reports | 2021

A systematic study on the synergistic effects of MWCNTs and core–shell particles on the physicomechanical properties of epoxy resin

 
 

Abstract


Here, core–shell impact modifier particles (CSIMPs) and multiwalled carbon nanotubes (MWCNs) were used as reinforcing agents for improving the toughness and tensile properties of epoxy resin. For this purpose, emulsion polymerization technique was exploited to fabricate poly(butyl acrylate-allyl methacrylate) core-poly(methyl methacrylate-glycidyl methacrylate) shell impact modifier particles with an average particle size of 407 nm. It was revealed that using a combination of the prepared CSIMPs and MWCNTs could significantly enhance the toughness and tensile properties of the epoxy resin. Also, it was observed that the dominant factors for improving the fracture toughness of the ternary composites are crack deflection/arresting as well as enlarged plastic deformation around the growing crack tip induced by the combination of rigid and soft particles. The Response Surface Methodology (RSM) with central composite design (CCD) was utilized to study the effects of the amounts of CSIMPs and MWCNTs on the physicomechanical properties of the epoxy resin. The proposed quadratic models were in accordance with the experimental results with correlation coefficient more than 98%. The optimum condition for maximum toughness, elastic modulus, and tensile strength was 3 wt% MWCNT and 1.03 wt% CSIMPs. The sample fabricated in the optimal condition indicated toughness, elastic modulus, and tensile strength equal to 2.2 MPa m1/2, 3014.5 MPa, and 40.6 MPa, respectively.

Volume 11
Pages None
DOI 10.1038/s41598-021-00333-3
Language English
Journal Scientific Reports

Full Text