Communications Biology | 2021

Hybrid PET-MRI for early detection of dopaminergic dysfunction and microstructural degradation involved in Parkinson’s disease

 
 
 
 
 
 
 
 
 

Abstract


Dopamine depletion and microstructural degradation underlie the neurodegenerative processes in Parkinson’s disease (PD). To explore early alterations and underlying associations of dopamine and microstructure in PD patients utilizing the hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI). Twenty-five PD patients in early stages and twenty-four matched healthy controls underwent hybrid 18 F-fluorodopa (DOPA) PET-diffusion tensor imaging (DTI) scanning. The striatal standardized uptake value ratio (SUVR), DTI maps (fractional anisotropy, FA; mean diffusivity, MD) in subcortical grey matter, and deterministic tractography of the nigrostriatal pathway were processed. Values in more affected (MA) side, less affected (LA) side and mean were analysed. Correlations and mediations among PET, DTI and clinical characteristics were further analysed. PD groups exhibited asymmetric pattern of dopaminergic dysfunction in putamen, impaired integrity in the microstructures (nigral FA, putaminal MD, and FA of nigrostriatal projection). On MA side, significant associations between DTI metrics (nigral FA, putaminal MD, and FA of nigrostriatal projection) and motor performance were significantly mediated by putaminal SUVR, respectively. Early asymmetric disruptions in putaminal dopamine concentrations and nigrostriatal pathway microstructure were detected using hybrid PET-MRI. The findings further implied that molecular degeneration mediates the modulation of microstructural disorganization on motor dysfunction in the early stages of PD. To explore early alterations and underlying associations of dopamine levels and microstructure in Parkinson’s Disease (PD), Shang et al use a hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) approach in early stage patients and age-matched controls. Their data implies that molecular degeneration mediates the effects of microstructural disorganization on motor dysfunction in the early stages of PD.

Volume 4
Pages None
DOI 10.1038/s42003-021-02705-x
Language English
Journal Communications Biology

Full Text