Communications Physics | 2021

Universal mobility characteristics of graphene originating from charge scattering by ionised impurities

 
 
 
 
 
 
 
 
 
 

Abstract


Pristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures. Graphene exhibits both extremely high electrical conductivity and electron mobility but an incomplete understanding of the underlying mechanisms so far limits potential applications in electrical devices. Here, the authors theoretically and experimentally investigate the role of charged impurities and optical phonons on the conductivity properties of graphene and establish a universal connection between the mobility and conductivity.

Volume 4
Pages 1-8
DOI 10.1038/s42005-021-00518-2
Language English
Journal Communications Physics

Full Text