Communications Physics | 2021

Skyrmion control of Majorana states in planar Josephson junctions

 
 
 

Abstract


Planar Josephson junctions provide a versatile platform, alternative to the nanowire-based geometry, for the generation of the Majorana bound states, due to the additional phase tunability of the topological superconductivity. The proximity induction of chiral magnetism and superconductivity in a two-dimensional electron gas showed remarkable promise to manipulate topological superconductivity. Here, we consider a Josephson junction involving a skyrmion crystal and show that the chiral magnetism of the skyrmions can create and control the Majorana bound states without the requirement of an intrinsic Rashba spin-orbit coupling. Interestingly, the Majorana bound states in our geometry are realized robustly at zero phase difference at the junction. The skyrmion radius, being externally tunable by a magnetic field or a magnetic anisotropy, brings a unique control feature for the Majorana bound states. Majorana fermions are elusive particles which have proven extremely tricky to observe experimentally, with current efforts focused on hybrid superconducting devices. Here, the authors theoretically propose a set up combining a Josephson junction and a skyrmion crystal to create and control the Majorana bound states.

Volume 4
Pages 1-8
DOI 10.1038/s42005-021-00666-5
Language English
Journal Communications Physics

Full Text