Nature Metabolism | 2019

Leader β-cells coordinate Ca2+ dynamics across pancreatic islets in vivo

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract


Pancreatic β-cells form highly connected networks within isolated islets. Whether this behaviour pertains to the situation in vivo, after innervation and during continuous perfusion with blood, is unclear. In the present study, we used the recombinant Ca2+ sensor GCaMP6 to assess glucose-regulated connectivity in living zebrafish Danio rerio, and in murine or human islets transplanted into the anterior eye chamber. In each setting, Ca2+ waves emanated from temporally defined leader β-cells, and three-dimensional connectivity across the islet increased with glucose stimulation. Photoablation of zebrafish leader cells disrupted pan-islet signalling, identifying these as likely pacemakers. Correspondingly, in engrafted mouse islets, connectivity was sustained during prolonged glucose exposure, and super-connected ‘hub’ cells were identified. Granger causality analysis revealed a controlling role for temporally defined leaders, and transcriptomic analyses revealed a discrete hub cell fingerprint. We thus define a population of regulatory β-cells within coordinated islet networks in vivo. This population may drive Ca2+ dynamics and pulsatile insulin secretion.Pancreatic β-cells are highly connected, and this network is crucial for the pulsatile release of insulin. Here Salem and colleagues demonstrated the existence of leader β-cells that respond first to glucose and are more closely linked to the other β-cells. They also showed that glucose increases β-cell calcium dynamics and connectivity between the leader and non-leader β-cells.

Volume 1
Pages 615-629
DOI 10.1038/s42255-019-0075-2
Language English
Journal Nature Metabolism

Full Text