Journal of Materials Chemistry | 2021

Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells

 
 
 
 
 

Abstract


The development of new electrode fabrication approaches from highly active electrocatalysts to replace the state-of-the-art Pt/C is most desirable for enhancing power performance and durability in proton exchange membrane fuel cells. However, the deployment of advanced, often shape-controlled Pt alloy electrocatalysts in actual electrodes remains challenging due to their small quantities in preparation and poor power performance in operating fuel cells. In this study, a new electrocatalyst approach is presented for Au integrated one-dimensional AgPt alloy nanorods. The atom arrangement is tuned through precisely controlling the metal ion reduction procedure to improve the catalyst activity. With 5 at% Au, nanorods with an average length of 20 nm and diameter of 3–4 nm are achieved. The test of Au–AgPt nanorods as cathode catalysts shows 1.2-fold higher fuel cell power density than that for commercial Pt/C catalysts, and a lower decline rate of 39.63% than 44.19% after an accelerated degradation test.

Volume 9
Pages 5578-5587
DOI 10.1039/D0TA08551K
Language English
Journal Journal of Materials Chemistry

Full Text