Soft matter | 2019

Charge-driven interfacial gelation of cellulose nanofibrils across the water/oil interface.

 
 
 
 
 
 

Abstract


Interfacial gels, obtained by the interaction of water-dispersible oxidised cellulose nanofibrils (OCNF) and oil-soluble oleylamine (OA), were produced across water/oil (W/O) interfaces. Surface rheology experiments showed that the complexation relies on the charge coupling between the negatively-charged OCNF and OA. Complexation across the W/O interface was found to be dependent on the ζ-potential of the OCNF (modulated by electrolyte addition), leading to different interfacial properties. Spontaneous OCNF adsorption at the W/O interface occurred for particles with ζ-potential more negative than -30 mV, resulting in the formation of interfacial gels; whilst for particles with ζ-potential of ca. -30 mV, spontaneous adsorption occurred, coupled with augmented interfibrillar interactions, yielding stronger and tougher interfacial gels. On the contrary, charge neutralisation of OCNF (ζ-potential values more positive than -30 mV) did not allow spontaneous adsorption of OCNF at the W/O interface. In the case of favourable OCNF adsorption, the interfacial gel was found to embed oil-rich droplets - a spontaneous emulsification process.

Volume None
Pages None
DOI 10.1039/c9sm01551e
Language English
Journal Soft matter

Full Text