Organic chemistry frontiers | 2021

Mechanistic insights into the rhodium–copper cascade catalyzed dual C–H annulation of indoles

 
 
 
 
 
 
 
 
 

Abstract


Density functional theory (DFT) calculations have been performed to provide mechanistic insight into the Rh/Cu co-catalyzed multicomponent annulation of indoles, diazo compounds, and α,β-unsaturated esters. Indole can undergo electrophilic attack by a dirhodium–carbene complex to form a cyclopropane intermediate, which is transferred to an enolate by deprotonation. A dimetallic Michael-type addition reaction is proposed by DFT calculation, where the diastereoselectivity is controlled by the interaction energy between the incoming α,β-unsaturated ester and enolate nucleophile. In copper catalysis, an intramolecular oxidation by copper enolate/copper ketonate resonance is revealed, by which copper enolate is partially oxidized to an α-carbonyl radical. Therefore, intramolecular radical addition with the indole moiety achieves annulation with the formation of a C3 radical in dearomatic indole. Oxidative hydrogen atom transfer then gives the aromatic annulation product by using excess copper chloride.

Volume 8
Pages 1739-1746
DOI 10.1039/d0qo01332c
Language English
Journal Organic chemistry frontiers

Full Text