Physical chemistry chemical physics : PCCP | 2021

Computational prediction of Au(I)-Pb(II) bonding in coordination complexes and study of the factors affecting the formation of Au(I)-E(II) (E = Ge, Sn, Pb) covalent bonds.

 
 
 
 
 

Abstract


We have studied computationally the Au-M (M = Ge, Sn, Pb) bonding trends in a series of model systems [(PH3)3Au-(MCl3)] (M = Ge (4), Sn (5), Pb (6)). For this, we have fully optimized the model systems at the MP2 level of theory, computing the Au-M bonding energy at the equilibrium distances applying the counterpoise (cp) correction to the basis-set superposition error (BSSE) and performing a natural energy decomposition analysis (NEDA). Furthermore, a topological analysis of the electron density using QTAIM, ELF and DORI tools was performed. In order to provide further insights on the possibility of predicting the existence of Au(i)-Pb(ii) donor bonds, Density Functional Theory calculations using the pbe functional and including dispersion corrections (DFT-D3/pbe) were performed on three model systems, [(PR3)3Au-(PbCl3)] (R = CH3 (7), H (8), CF3 (9)). This study also includes the corresponding NEDA calculations and the topological analysis of the electron density, which provides information about the Au-Pb bond, but also about the supporting weak ligand-ligand interactions. Overall, the study provides information about the factors affecting the formation of stabilizing Au(i)-Pb(ii) covalent bonds.

Volume 23 17
Pages \n 10174-10183\n
DOI 10.1039/d1cp00325a
Language English
Journal Physical chemistry chemical physics : PCCP

Full Text