Physical chemistry chemical physics : PCCP | 2021

Designing an alkali-metal-like superatom Ca3B for ambient nitrogen reduction to ammonia.

 
 
 
 
 
 
 

Abstract


Converting earth-abundant nitrogen (N2) gas into ammonia (NH3) under mild conditions is one of the most important issues and a long-standing challenge in chemistry. Herein, a new superatom Ca3B was theoretically designed and characterized to reveal its catalytic performance in converting N2 into NH3 by means of density functional theory (DFT) computations. The alkali-metal-like identity of this cluster is verified by its lower vertical ionization energy (VIE, 4.29 eV) than that of potassium (4.34 eV), while its high stability was guaranteed by the large HOMO-LUMO gap and binding energy per atom (Eb). More importantly, this well-designed superatom possesses unique geometric and electronic features, which can fully activate N2via a double-electron transfer mechanism, and then convert the activated N2 into NH3 through a distal reaction pathway with a small energy barrier of 0.71 eV. It is optimistically hoped that this work could intrigue more endeavors to design specific superatoms as excellent catalysts for the chemical adsorption and reduction of N2 to NH3.

Volume 23 34
Pages \n 18908-18915\n
DOI 10.1039/d1cp01533h
Language English
Journal Physical chemistry chemical physics : PCCP

Full Text