Physical chemistry chemical physics : PCCP | 2021

Direct evidence for a radiation-induced synthesis of acetonitrile and isoacetonitrile from a 1\u2009:\u20091 CH4HCN complex at cryogenic temperatures: is it a missing link between inorganic and prebiotic astrochemistry?

 
 
 
 

Abstract


Nitriles are important constituents of extraterrestrial media. Nitriles are supposed to play a crucial role in prebiotic chemistry occurring in the interstellar medium. In this work, we have investigated the low-temperature radiation-induced transformations of a 1\u2009:\u20091 CH4HCN complex as a plausible precursor of the simplest nitriles using the matrix isolation approach with FTIR spectroscopic detection. The parent complexes isolated in a noble gas (Ng) matrix were obtained by deposition of the CH4/HCN/Ng gaseous mixture and characterized by comparison of experimental complexation-induced shifts of the HCN fundamentals with the results of the ab initio calculations. It was found that the X-ray irradiation of low-temperature matrices containing the isolated 1\u2009:\u20091 CH4HCN complex resulted in the formation of acetonitrile (CH3CN) and isoacetonitrile (CH3NC) and it appears to be the first experimental evidence for the formation of C2 nitriles (acetonitrile and isoacetonitrile) from such a building block . Additionally, a 1\u2009:\u20091 CH4HNC complex was tentatively assigned to the irradiated Ar and Kr matrices. It is demonstrated that the matrix has a strong effect on the CH3CN/CH3NC yield ratio, which dramatically increases in the row Ar < Kr < Xe. Also, the efficiency of the radiation-induced formation of the CH4HNC complex was shown to decrease from Ar to Kr. It is believed that the proposed pathway for acetonitrile formation may be a significant step in the radiation-induced evolution leading to complex organic molecules and biomolecules under astrochemical conditions. Furthermore, the obtained results provide a prominent example of the impact of very weak intermolecular interactions on the radiation-induced transformations in cold media.

Volume 23 34
Pages \n 18449-18460\n
DOI 10.1039/d1cp01598b
Language English
Journal Physical chemistry chemical physics : PCCP

Full Text