Dalton transactions | 2021

A NiS co-catalyst decorated Zn3In2S6/g-C3N4 type-II ball-flower-like nanosphere heterojunction for efficient photocatalytic hydrogen production.

 
 
 
 
 
 

Abstract


Promoting the separation of photogenerated electron-hole pairs and enhancing the charge carrier transfer are critical in photocatalysis. In our work, a ball-flower-like NiS/Zn3In2S6/g-C3N4 photocatalyst fabricated by a hydrothermal method exhibited superior performance for photocatalytic water splitting. The optimized 2.0% NiS/Zn3In2S6/g-C3N4 rivaled noble metal based Pt/g-C3N4 and showed an apparent quantum efficiency (AQE) of 24.3% at 420 nm, with a H2 yield of 4.135 mmol g-1 h-1, which was 30.4 and 9.51 times that of pure g-C3N4 and binary Zn3In2S6/g-C3N4 composites, respectively. The experimental and characterization results suggested that the heterojunction formed between Zn3In2S6/g-C3N4 and the decorating NiS co-catalyst cooperatively suppressed the electron-hole recombination and facilitated the charge carrier transfer, thus resulting in significant improvement of the H2 evolution performance. Moreover, the increased specific surface area and the enhanced visible-light absorption also contributed to superior water splitting performance. The prepared ternary catalytic system with the heterojunction and non-noble metal co-catalyst has great potential as an alternative to noble metals for achieving cost-efficient water splitting systems.

Volume None
Pages None
DOI 10.1039/d1dt01589c
Language English
Journal Dalton transactions

Full Text