Dalton transactions | 2021

Benzyltrimethylammonium cadmium dicyanamide with polar order in multiple phases and prospects for linear and nonlinear optical temperature sensing.

 
 
 
 
 
 
 
 
 
 

Abstract


Coordination polymers with multiple non-centrosymmetric phases have sparked substantial research efforts in the materials community. We report the synthesis and properties of a hitherto unknown cadmium dicyanamide coordination polymer comprising benzyltrimethylammonium cations (BeTriMe+). The room-temperature (RT) crystal structure of [BeTriMe][Cd(N(CN)2)3] (BeTriMeCd) is composed of Cd centers linked together by triple dca-bridges to form one-dimensional chains with BeTriMe+ cations located in void spaces between the chains. The structure is polar, the space group is Cmc21, and the spontaneous polarization in the c-direction is induced by an arrangement of BeTriMe+ dipoles. BeTriMeCd undergoes a second-order phase transition (PT) at T1 = 268 K to a monoclinic polar phase P21. Much more drastic structural changes occur at the first-order PT observed in DSC at T2 = 391 K. Raman data prove that the PT at T2 leads to extensive rearrangement of the Cd-dca coordination sphere and pronounced disorder of both dca and BeTriMe+. On cooling, the HT polymorph transforms at T3 = 266 K to another phase of unknown symmetry. Temperature-resolved second harmonic generation (TR-SHG) studies at 800 nm confirm the structural non-centrosymmetry of all the phases detected. Optical studies indicate that BeTriMeCd exhibits at low temperatures an intense emission under 266 nm excitation. Strong temperature dependence of both one-photon excited luminescence and SHG response allowed for the demonstration of two disparate modes of optical thermometry for a single material. One is the classic ratiometric luminescence thermometry employing linear excitation in the ultraviolet region while the other is single-band SHG thermometry, a thus far unprecedented subtype of nonlinear optical thermometry. Thus, BeTriMeCd is a rare example of a dicyanamide framework exhibiting polar order, SHG activity, photoluminescence properties and linear and nonlinear optical temperature sensing capability.

Volume None
Pages None
DOI 10.1039/d1dt01675j
Language English
Journal Dalton transactions

Full Text