Nanoscale | 2021

Electrospun ZIF-derived cavity porous carbon nanofibers as a freestanding cathode for lithium-oxygen batteries with ultralow overpotential.

 
 
 
 

Abstract


Construction of an efficient electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with low overpotential and cycling stability for lithium-oxygen batteries still remains a puzzling challenge. Herein, we propose a scalable approach to integrate ZIF derivatives into cavity porous carbon nanofibers (CPCNFs) via an electrospinning technique and thermal treatment (Zn/CoNC@CPCNFs). The ultralong interconnected nanofiber matrix is beneficial, and the developed Zn/CoNC@CPCNFs catalyst with excellent flexibility can be utilized as a free-standing electrode based on an air-cathode. Moreover, this confinement strategy ensures the dispersion of Co-based species and abundant porosity structure, which contributes to the transport and adsorption of oxygen and exposes more Co-N coordination catalytic centers, as a result of a drastically ultralow voltage gap. Consequently, a cell based on a Zn/CoNC@CPCNF electrode presents remarkably decreased charge-discharge polarization (0.36 V), a high initial discharge capacity with an ultra-low overpotential of 0.59 V, and long-term cyclability with a cut-off capacity of 0.2 mA h cm-2 at 0.02 mA cm-2. We hope that our protocol will offer instruction for the design and application of oxygen electrocatalysts for energy conversion and storage.

Volume None
Pages None
DOI 10.1039/d1nr04850c
Language English
Journal Nanoscale

Full Text