Archive | 2021

On-chip data organization and access strategy for spaceborne SAR real-time imaging processor

 
 
 
 

Abstract


Spaceborne SAR(synthetic aperture radar) imaging requires real-time processing of enormous amount of input data with limited power consumption. Designing advanced heterogeneous array processors is an effective way to meet the requirements of power constraints and real-time processing of application systems. To design an efficient SAR imaging processor, the on-chip data organization structure and access strategy are of critical importance. Taking the typical SAR imaging algorithm-chirp scaling algorithm-as the targeted algorithm, this paper analyzes the characteristics of each calculation stage engaged in the SAR imaging process, and extracts the data flow model of SAR imaging, and proposes a storage strategy of cross-region cross-placement and data sorting synchronization execution to ensure FFT/IFFT calculation pipelining parallel operation. The memory wall problem can be alleviated through on-chip multi-level data buffer structure, ensuring the sufficient data providing of the imaging calculation pipeline. Based on this memory organization and access strategy, the SAR imaging pipeline process that effectively supports FFT/IFFT and phase compensation operations is therefore optimized. The processor based on this storage strategy can realize the throughput of up to 115.2 GOPS, and the energy efficiency of up to 254 GOPS/W can be achieved by implementing 65 nm technology. Compared with conventional CPU+GPU acceleration solutions, the performance to power consumption ratio is increased by 63.4 times. The proposed architecture can not only improve the real-time performance, but also reduces the design complexity of the SAR imaging system, which facilitates excellent performance in tailoring and scalability, satisfying the practical needs of different SAR imaging platforms.

Volume 39
Pages 126-134
DOI 10.1051/JNWPU/20213910126
Language English
Journal None

Full Text