E3S Web of Conferences | 2021

An intelligent lead-acid battery closed-loop charger using a combined fuzzy controller for PV applications

 
 
 
 
 
 

Abstract


This paper presents the modeling of an intelligent combined MPPT and Lead-Acid battery charger controller for standalone solar photovoltaic systems. It involves the control of a DC/DC buck converter through a control unit, which contains two cascaded fuzzy logic controllers (FLC), that adjusts the required duty cycle of the converter according to the state of charge and the three stage lead acid battery charging system. The first fuzzy logic controller (FLC1) consists of an MPPT controller to extract the maximum power produced by the PV array, while the second fuzzy controller (FLC2) is aimed to control the voltage across the battery to ensure the three stage charging approach. This solution of employing two distinct cascaded fuzzy controllers surmounts the drawbacks of the classical chargers in which the voltage provided to the lead acid battery is not constant owing to the effects of the MPPT control which can automatically damage the battery. Thus, the suggested control strategy has the benefit of extracting the full power against the PV array, avoiding battery damage incurred by variable MPPT voltage and increasing the battery’s lifespan.

Volume None
Pages None
DOI 10.1051/e3sconf/202129701033
Language English
Journal E3S Web of Conferences

Full Text