AIP Advances | 2019

Plasmon-exciton coupling in nanostructured metal-semiconductor composite films

 
 
 
 
 
 

Abstract


Nonlinear optical response of metal-semiconductor Zn0.8Co0.2O/Au nanocomposite films was studied experimentally and theoretically. Z-scan measurements revealed a positive nonlinear index of refraction of the composite film. Fluorescent spectroscopy measurements exhibited a narrow sharp peak that might be attributed to exciton peak of semiconductor nanostructured thin film enhanced by nearby gold nanoparticles. Classical electrodynamic calculations of a quantum dot in close proximity to a gold nanoparticle agree well with the experimentally observed normalized quantum efficiency.Nonlinear optical response of metal-semiconductor Zn0.8Co0.2O/Au nanocomposite films was studied experimentally and theoretically. Z-scan measurements revealed a positive nonlinear index of refraction of the composite film. Fluorescent spectroscopy measurements exhibited a narrow sharp peak that might be attributed to exciton peak of semiconductor nanostructured thin film enhanced by nearby gold nanoparticles. Classical electrodynamic calculations of a quantum dot in close proximity to a gold nanoparticle agree well with the experimentally observed normalized quantum efficiency.

Volume 9
Pages 45021
DOI 10.1063/1.5090900
Language English
Journal AIP Advances

Full Text