Physics of Fluids | 2019

Suspended particle motion close to the surface of rotating cylindrical filtering membrane

 

Abstract


The rotational filtration principle is known as an effective approach to slow the plugging of pores in a cylindrical filtering membrane. The existing applications are based on the study of the Taylor-Couette cell with a weak imposed radial inflow through a rotating inner cylinder. They are mostly related to thin filtration with a high transmembrane pressure. We consider a possible flow mode characterized by a high through-flow rate providing the subcritical liquid rotation within the inner cylinder boundary layer. An interphase interaction model is substantiated for the typical conditions considered and equations of a suspended solid particle motion are obtained in a dimensionless form giving similarity criteria of the problem. A number of benefits can be achieved with using this proposed flow mode when the particle size is one order of magnitude less than the boundary layer thickness. The influence of centrifugal force on the phase slip is the most notable when the particles are of the above size. It is possible, in particular, to exclude the contact of such particles with the membrane surface. The results obtained allow extending the application area of the high performance rotational filtration.The rotational filtration principle is known as an effective approach to slow the plugging of pores in a cylindrical filtering membrane. The existing applications are based on the study of the Taylor-Couette cell with a weak imposed radial inflow through a rotating inner cylinder. They are mostly related to thin filtration with a high transmembrane pressure. We consider a possible flow mode characterized by a high through-flow rate providing the subcritical liquid rotation within the inner cylinder boundary layer. An interphase interaction model is substantiated for the typical conditions considered and equations of a suspended solid particle motion are obtained in a dimensionless form giving similarity criteria of the problem. A number of benefits can be achieved with using this proposed flow mode when the particle size is one order of magnitude less than the boundary layer thickness. The influence of centrifugal force on the phase slip is the most notable when the particles are of the above size. It is ...

Volume 31
Pages 53302
DOI 10.1063/1.5092424
Language English
Journal Physics of Fluids

Full Text