AIP Advances | 2019

Thickness measurement of multilayer film stack in perovskite solar cell using spectroscopic ellipsometry

 
 
 
 
 

Abstract


The rapid surge in perovskite solar cell efficiency has necessitated the development of viable metrology techniques during device integration, paving the way for commercialization. Ellipsometry is considered the most appropriate technique for fast and accurate thickness measurement for large scale production. However, a precise and well-calibrated model is a prerequisite for this technique. While ellipsometry of individual device layers has been reported in recent perovskite literature, a comprehensive multilayer modeling approach is thus far unavailable. Perovskite optoelectronic devices generally consist of a six-layer film stack with three transparent layers required for optical absorption in the perovskite layer. Spin casted thin films, now common in this line of research, impart their own difficulties into ellipsometric modeling. Roughnesses at each heterointerface, similarities in optical spectra of transparent layers, and anomalous dispersion of perovskite are just a few of such challenges. In this work, we report the process of building an ellipsometry model from scratch for thickness measurement of methylammonium lead iodide (MAPI) perovskite and indium tin oxide (ITO)/hole transport layer (HTL) bilayer thin film stacks on a glass substrate. Three promising representatives of HTLs (CuI, Cu2O, and PEDOT:PSS) were studied. The models were extended to measure the individual layer thicknesses of the MAPI/HTL/ITO film stack on a glass substrate using the models developed for individual layers. Optical constants of all the representative thin films were thus extracted for a wide wavelength range (300 nm–900 nm).

Volume 9
Pages 125107
DOI 10.1063/1.5125686
Language English
Journal AIP Advances

Full Text