Applied Physics Letters | 2021

Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications

 
 
 
 
 
 

Abstract


Strong light–matter interaction is at the heart of modern quantum technological applications and is the basis for a wide range of rich optical phenomena. Coupling a single quantum emitter strongly with electromagnetic fields provides an unprecedented control over its quantum states and enables high-fidelity quantum operations. However, single-emitter strong coupling is exceptionally fragile and has been realized mostly at cryogenic temperatures. Recent experiments have, however, demonstrated that single-emitter strong coupling can be realized at room temperature by using plasmonic nanocavities that confine optical fields via surface plasmons strongly on metal surfaces and facilitate sub-picosecond light–matter interaction. Here, we outline recent theoretical developments and experimental demonstrations of room-temperature strong coupling in the plasmonic platform, from emitter ensembles down to the single emitter limit, before placing a focus on selective studies that explore and provide insight into applications of plexcitonic strong coupling including sensing of single biological molecules, qubit entanglement generation, and reconfigurable single-photon sources and provide an outline of research directions in quantum sensing, quantum information processing, and ultrafast spectroscopy.

Volume 118
Pages 130501
DOI 10.1063/5.0032013
Language English
Journal Applied Physics Letters

Full Text