The Journal of chemical physics | 2021

Theoretical investigation of a novel xylene-based light-driven unidirectional molecular motor.

 
 
 

Abstract


In this study, the working mechanism of the first light-driven rotary molecular motors used to control an eight-base-pair DNA hairpin has been investigated. In particular, this linker was reported to have promising photophysical properties under physiological conditions, which motivated our work at the quantum mechanical level. Cis-trans isomerization is triggered by photon absorption at wavelengths ranging 300 nm-400 nm, promoting the rotor to the first excited state, and it is mediated by an energy-accessible conical intersection from which the ground state is reached back. The interconversion between the resulting unstable isomer and its stable form occurs at physiological conditions in the ground state and is thermally activated. Here, we compare three theoretical frameworks, generally used in the quantum description of medium-size chemical systems: Linear-Response Time-Dependent Density Functional Theory (LR-TDDFT), Spin-Flip TDDFT (SF-TDDFT), and multistate complete active space second-order perturbation theory on state-averaged complete active space self consistent field wavefunctions (MS-CASPT2//SA-CASSCF). In particular, we show the importance of resorting to a multireference approach to study the rotational cycle of light-driven molecular motors due to the occurrence of geometries described by several configurations. We also assess the accuracy and computational cost of the SF-TDDFT method when compared to MS-CASPT2 and LR-TDDFT.

Volume 154 6
Pages \n 064111\n
DOI 10.1063/5.0038281
Language English
Journal The Journal of chemical physics

Full Text