The Review of scientific instruments | 2021

Parallel optically detected magnetic resonance spectrometer for dozens of single nitrogen-vacancy centers using laser-spot lattice.

 
 
 
 
 
 
 
 

Abstract


We develop a parallel optically detected magnetic resonance (PODMR) spectrometer to address, manipulate, and read out an array of single nitrogen-vacancy (NV) centers in diamond in parallel. In this spectrometer, we use an array of micro-lenses to generate a 20 × 20 laser-spot lattice (LSL) on the objective focal plane and then align the LSL with an array of single NV centers. The quantum states of NV centers are manipulated by a uniform microwave field from a Ω-shape coplanar coil. As an experimental demonstration, we observe 80 NV centers in the field of view. Among them, magnetic resonance (MR) spectra and Rabi oscillations of 18 NV centers along the external magnetic field are measured in parallel. These results can be directly used to realize parallel quantum sensing and multiple times speedup compared with the confocal technique. Regarding the nanoscale MR technique, PODMR will be crucial for a high throughput single molecular MR spectrum and imaging.

Volume 92 4
Pages \n 045107\n
DOI 10.1063/5.0039110
Language English
Journal The Review of scientific instruments

Full Text