The Journal of chemical physics | 2021

Estimating transition path times and shapes from single-molecule photon trajectories: A simulation analysis.

 
 

Abstract


In a two-state molecular system, transition paths comprise the portions of trajectories during which the system transits from one stable state to the other. Because of their low population, it is essentially impossible to obtain information on transition paths from experiments on a large sample of molecules. However, single-molecule experiments such as laser optical tweezers or Förster resonance energy transfer (FRET) spectroscopy have allowed transition-path durations to be estimated. Here, we use molecular simulations to test the methodology for obtaining information on transition paths in single-molecule FRET by generating photon trajectories from the distance trajectories obtained in the simulation. Encouragingly, we find that this maximum likelihood analysis yields transition-path times within a factor of 2-4 of the values estimated using a good coordinate for folding, but tends to systematically underestimate them. The underestimation can be attributed partly to the fact that the large changes in the end-end distance occur mostly early in a folding trajectory. However, even if the transfer efficiency is a good reaction coordinate for folding, the assumption that the transition-path shape is a step function still leads to an underestimation of the transition-path time as defined here. We find that allowing more flexibility in the form of the transition path model allows more accurate transition-path times to be extracted and points the way toward further improvements in methods for estimating transition-path time and transition-path shape.

Volume 154 11
Pages \n 115101\n
DOI 10.1063/5.0040949
Language English
Journal The Journal of chemical physics

Full Text