Journal of Applied Physics | 2021

Pressure gradient effect on spin-crossover materials: Experiment vs theory

 
 
 
 
 
 
 

Abstract


We studied the effect of non-hydrostatic pressure on the hysteretic spin crossover in coordination complexes. By introducing into an Ising-like model a double distribution of the interactions and gap energy, respectively, we were able to generate the major hysteresis loop and the first-order reversal curve (FORC) diagram for spin-crossover systems of 106 hysterons (like-spin domains). We show that, for high pressure gradients around the spin-crossover system, the thermal hysteresis loop takes an asymmetric shape, in good agreement with the experimental data on pressure effect recorded at low temperatures, below the solidification of the pressure transmitting medium. Interestingly, the FORC diagram method seems to be much more sensitive to local changes than the “bulk” parameters, which characterize the major hysteresis loop.

Volume 129
Pages 64501
DOI 10.1063/5.0042582
Language English
Journal Journal of Applied Physics

Full Text