The Journal of chemical physics | 2021

Photodetachment spectroscopy and resonant photoelectron imaging of cryogenically cooled 1-pyrenolate.

 
 
 
 

Abstract


We report an investigation of the 1-pyrenolate anion (PyO-) and the 1-pyrenoxy radical (PyO) using photodetachment spectroscopy and resonant photoelectron imaging of cryogenically cooled anions. The electron affinity of PyO is measured to be 2.4772(4) eV (19 980 ± 3 cm-1) from high-resolution photoelectron spectroscopy. Photodetachment spectroscopy reveals a dipole-bound state (DBS) for PyO- 280 cm-1 below the detachment threshold as well as a broad and intense valence excited state (shape resonance) 1077 cm-1 above the detachment threshold. The shape resonance with an excitation energy of 21 055 cm-1 is due to excitation of an electron from the highest occupied molecular orbital of PyO- to its lowest unoccupied molecular orbital in the continuum. Twenty-nine vibrational levels of the DBS are observed, including 27 above-threshold vibrational levels (vibrational Feshbach resonances). Twenty-seven resonant photoelectron spectra are obtained by tuning the detachment laser to the vibrational Feshbach resonances, resulting in highly non-Franck-Condon photoelectron spectra and rich vibrational information. In total, the frequencies of 21 vibrational modes are obtained for the PyO radical by the combination of the photodetachment and resonant photoelectron spectroscopy, including 13 out-of-plane bending modes.

Volume 154 9
Pages \n 094308\n
DOI 10.1063/5.0043932
Language English
Journal The Journal of chemical physics

Full Text