Archive | 2021

InP-based single-photon sources operating at telecom C-band with increased extraction efficiency

 
 
 
 
 
 
 
 
 
 

Abstract


In this work we demonstrate a triggered single-photon source operating at the telecom C-band with photon extraction efficiency exceeding any reported values in this range. The non-classical light emission with low probability of the multiphoton events is realized with single InAs quantum dots (QDs) grown by molecular beam epitaxy and embedded directly in an InP matrix. Low QD spatial density on the order of 5x10 cm to ~2x10 cm and symmetric shape of these nanostructures together with spectral range of emission makes them relevant for quantum communication applications. The engineering of extraction efficiency is realized by combining a bottom distributed Bragg reflector consisting of 25 pairs of InP/In0.53Ga0.37Al0.1As layers and cylindrical photonic confinement structures. Realization of such technologically nondemanding approach even in a non-deterministic fashion results in photon extraction efficiency of (13.3±2)% into 0.4 numerical aperture detection optics at approx. 1560 nm emission wavelength, i.e., close to the center of the telecom C-band. a) Corresponding authors: [email protected], [email protected]

Volume None
Pages None
DOI 10.1063/5.0045997
Language English
Journal None

Full Text