AIP Advances | 2021

Enhanced ductility and optoelectronic properties of environment-friendly CsGeCl3 under pressure

 
 
 
 
 

Abstract


Eco-friendly inorganic halide perovskite materials with numerous structural configurations and compositions are now in the leading place of researcher’s attention for outstanding photovoltaic and optoelectronic performance. In the present approach, density functional theory calculations have been performed to explore the structural, mechanical, electronic, and optical properties of perovskite-type CsGeCl3 under various hydrostatic pressures, up to 10\xa0GPa. The result shows that the optical absorption and conductivity are directed toward the low-energy region (red shift) remarkably with increasing pressure. The analysis of mechanical properties certifies that CsGeCl3 has ductile entity and the ductile manner has increasing affinity with applied pressure. The decreasing affinity of the bandgap is also perceived with applied pressure, which notifies that the performance of the optoelectronic device can be tuned and developed under pressure.

Volume 11
Pages 45014
DOI 10.1063/5.0048849
Language English
Journal AIP Advances

Full Text