Physics of Fluids | 2021

Surface anchoring mediates bifurcation in nematic microflows within cylindrical capillaries

 
 
 

Abstract


Capillary microflows of liquid crystal phases are central to material, biological and bio-inspired systems. Despite their fundamental and applied significance, a detailed understanding of the stationary behaviour of nematic liquid crystals (NLC-s) in cylindrical capillaries is still lacking. Here, using numerical simulations based on the continuum theory of Leslie, Ericksen and Parodi, we investigate stationary NLC flows within cylindrical capillaries possessing homeotropic (normal) and uniform planar anchoring conditions. By considering the material parameters of the flow-aligning NLC, 5CB, we report that instead of the expected, unique director field monotonically approaching the alignment angle over corresponding Ericksen numbers (dimensionless number capturing viscous v/s elastic effects), a second solution emerges below a threshold flow rate (or applied pressure gradient). We demonstrate that the onset of the second solution, a nematodynamic bifurcation yielding energetically degenerate director tilts at the threshold pressure gradient, can be controlled by the surface anchoring and the flow driving mechanism (pressure-driven or volume-driven). For homeotropic surface anchoring, this alternate director field orients against the alignment angle in the vicinity of the capillary center; while in the uniform planar case, the alternate director field extends throughout the capillary volume, leading to reduction of the flow speed with increasing pressure gradients. While the practical realization and utilization of such nematodynamic bifurcations still await systematic exploration, signatures of the emergent rheology have been reported previously within microfluidic environments, under both homeotropic (Sengupta et al., Phys. Rev. Lett. 110, 048303, 2013) and planar anchoring conditions (Sengupta, Int. J. Mol. Sci. 14, 22826, 2013).

Volume None
Pages None
DOI 10.1063/5.0050379
Language English
Journal Physics of Fluids

Full Text