Journal of Applied Physics | 2021

Spatially resolved x-ray detection with photonic crystal scintillators

 
 
 
 
 
 

Abstract


We study the self-collimation phenomenon in photonic crystals (PhC) of wide bandgap materials for ultra-fast and high spatial resolution x-ray detection. We work on various heavy inorganic scintillators: BaF2, GaN, ZnO, CsI:Tl, NaI:Tl, LYSO, WO4 compounds, and plastic scintillators. Conventional scintillator detectors do not rely on a direct detection mechanism; hence, they require intricate design and fabrication processes. We offer a PhC design to observe self-collimation phenomena and overcome the ongoing spatial resolution challenges with these types of materials. We investigate the photonic band diagrams and iso-frequency contours. Fourier transforms based on finite-difference time-domain and frequency domain simulations are done for verifying and analyzing the self-collimation with the selected material. Light extraction efficiency at the PhC–air interface, depending on the truncation distance from the excitation point, is measured. Beam divergence values are calculated at 1\u2009mm propagation distance. The vertical field profiles are obtained to observe the confinement. For the spatial resolution analysis, cross-sectional beam profiles have been examined. Gaussian envelopes are fitted to beam profiles for a consistent data analysis, and full-width-at-half-maximum values are considered. As a result, we theoretically prove and demonstrate the spatially resolved x-ray detection at the sub-micrometer level for a wide range of scintillator materials.

Volume None
Pages None
DOI 10.1063/5.0050380
Language English
Journal Journal of Applied Physics

Full Text