Physics of Fluids | 2021

Rheological signatures of gel–glass transition and a revised phase diagram of an aqueous triblock copolymer solution of Pluronic F127

 
 
 

Abstract


In this work, we study temperature-induced state change of an aqueous solution of triblock copolymer composed of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), PEO-PPO-PEO (Pluronic F127), at different concentrations using rheology. While this temperature-dependent state change visually appears like a liquid–soft solid transition, and the soft solid state has been termed as a gel in the literature, there is a debate regarding the precise microstructure of the soft solid state. We observe that over a concentration domain of interest, an aqueous solution of F127 overwhelmingly demonstrates all the characteristic rheological features of not just a sol–gel–glass transition at low temperatures and glass–liquid transition at high temperatures, but also that associated with the individual states, such as sol, post-gel, and glass. The temperature at which the gel–glass transition is observed decreases while the temperature associated with glass–liquid transition increases with an increase in the concentration of F127. Based on the observed behavior, we propose a mechanism that considers the change in micelle volume fraction and alteration of the hydrophilicity of PEO corona as a function of temperature. Finally, we construct a phase diagram and discuss the similarities and differences with respect to various phase diagrams of F127 solution available in the literature.

Volume None
Pages None
DOI 10.1063/5.0057090
Language English
Journal Physics of Fluids

Full Text