Russian Chemical Reviews | 2021

Hydrogen energy: development prospects and materials

 
 

Abstract


The review addresses the prospects of global hydrogen energy development. Particular attention is given to the design of materials for sustainable hydrogen energy applications, including hydrogen production, purification, storage, and conversion to energy. The review highlights the key role of oxide-supported metal or alloy nanoparticles as catalysts in the hydrogen production via the conversion of natural gas or alcohols. An alternative approach is the pyrolysis of hydrocarbons giving hydrogen and carbon. The direct production of high-purity hydrogen can be performed using electrolysis or membrane catalysis. Apart from conventional hydrogen storage methods such as the compression and liquefaction, the hydrogen alloy absorption and chemical conversion to liquid carriers (ammonia and toluene cycles) are considered. Fuel cells, containing catalysts and proton-conducting membranes as the key components, are used for hydrogen energy generation. Binary platinum alloys or core – shell structures supported on carbon or oxides can be employed to facilitate the oxygen electroreduction and CO electrooxidation in low-temperature fuel cells. High conductivity and selectivity are provided by perfluorinated sulfonic acid membranes. The high cost of the latter materials dictates the development of alternative membrane materials. A crucial issue in high-temperature fuel cells is the necessity of reducing the operating temperature and ohmic losses. This problem can be solved by designing thin-film materials and replacing oxygen-conducting ceramic membranes by proton-conducting membranes. The bibliography includes 290 references.

Volume 90
Pages 627 - 643
DOI 10.1070/RCR5014
Language English
Journal Russian Chemical Reviews

Full Text