Proceedings of the National Academy of Sciences of the United States of America | 2021

Early Holocene greening of the Sahara requires Mediterranean winter rainfall

 
 
 
 
 
 
 
 

Abstract


Significance Explaining the greening of the Sahara during the Holocene has been a challenge for decades. A strengthening of the African monsoon caused by increased summer insolation is usually cited to explain why the Sahara was vegetated from 14,000 to 5,000 y ago. Here, we provide a unique climate record of quantified winter, spring, and summer precipitation in Morocco over the past 18,500 y, and numeric simulations, which show that moisture contributions from the Mediterranean Sea and the North Atlantic Ocean in winter, were as important as the expanded summer monsoon for the greening of the Sahara during the African humid period. The findings of this study will help to better understand and simulate climate variability over northern Africa. The greening of the Sahara, associated with the African Humid Period (AHP) between ca. 14,500 and 5,000 y ago, is arguably the largest climate-induced environmental change in the Holocene; it is usually explained by the strengthening and northward expansion of the African monsoon in response to orbital forcing. However, the strengthened monsoon in Early to Middle Holocene climate model simulations cannot sustain vegetation in the Sahara or account for the increased humidity in the Mediterranean region. Here, we present an 18,500-y pollen and leaf-wax δD record from Lake Tislit (32° N) in Morocco, which provides quantitative reconstruction of winter and summer precipitation in northern Africa. The record from Lake Tislit shows that the northern Sahara and the Mediterranean region were wetter in the AHP because of increased winter precipitation and were not influenced by the monsoon. The increased seasonal contrast of insolation led to an intensification and southward shift of the Mediterranean winter precipitation system in addition to the intensified summer monsoon. Therefore, a winter rainfall zone must have met and possibly overlapped the monsoonal zone in the Sahara. Using a mechanistic vegetation model in Early Holocene conditions, we show that this seasonal distribution of rainfall is more efficient than the increased monsoon alone in generating a green Sahara vegetation cover, in agreement with observed vegetation. This conceptual framework should be taken into consideration in Earth system paleoclimate simulations used to explore the mechanisms of African climatic and environmental sensitivity.

Volume 118
Pages None
DOI 10.1073/pnas.2024898118
Language English
Journal Proceedings of the National Academy of Sciences of the United States of America

Full Text