Proceedings of the National Academy of Sciences | 2021

Benthic jellyfish dominate water mixing in mangrove ecosystems

 
 
 
 

Abstract


Significance Water mixing is critical for aquatic life and mangrove habitats are vital nurseries for many species. However, these sheltered habitats experience little water mixing. Cassiopea sp. jellyfish continuously produce a vertical current capable of transporting hundreds of liters of seawater per hour. They live in shallow subtidal regions and the flows they generate have the potential to result in turnover of the entire water column up to every 15 min for an average population. Additionally, Cassiopea sp. can expedite the transport of nutrient-rich water from sediments into the water column. Thus, Cassiopea sp. represent a previously unrecognized ecosystem engineer within these shallow coastal environments that can affect primary productivity and nutrient distribution and alter new habitats as their range is expanding. Water mixing is a critical mechanism in marine habitats that governs many important processes, including nutrient transport. Physical mechanisms, such as winds or tides, are primarily responsible for mixing effects in shallow coastal systems, but the sheltered habitats adjacent to mangroves experience very low turbulence and vertical mixing. The significance of biogenic mixing in pelagic habitats has been investigated but remains unclear. In this study, we show that the upside-down jellyfish Cassiopea sp. plays a significant role with respect to biogenic contributions to water column mixing within its shallow natural habitat (<2 m deep). The mixing contribution was determined by high-resolution flow velocimetry methods in both the laboratory and the natural environment. We demonstrate that Cassiopea sp. continuously pump water from the benthos upward in a vertical jet with flow velocities on the scale of centimeters per second. The volumetric flow rate was calculated to be 212 L⋅h-1 for average-sized animals (8.6 cm bell diameter), which translates to turnover of the entire water column every 15 min for a median population density (29 animals per m2). In addition, we found Cassiopea sp. are capable of releasing porewater into the water column at an average rate of 2.64 mL⋅h−1 per individual. The release of nutrient-rich benthic porewater combined with strong contributions to water column mixing suggests a role for Cassiopea sp. as an ecosystem engineer in mangrove habitats.

Volume 118
Pages None
DOI 10.1073/pnas.2025715118
Language English
Journal Proceedings of the National Academy of Sciences

Full Text